Calcium channels in Xenopus spinal neurons differ in somas and presynaptic terminals.
نویسندگان
چکیده
Calcium channels play dual roles in cell signaling by promoting membrane depolarization and allowing entry of calcium ions. Patch-clamp recordings of calcium and calcium-dependent currents from the soma of Xenopus spinal neurons indicate key functional differences from those of presynaptic terminals. Both terminals and somas exhibit prominent high-voltage-activated (HVA) calcium current, but only the soma expresses additional low-voltage-activated (LVA) T-type current. Further differences are reflected in the HVA current; N- and R-type channels are predominant in the soma while the terminal calcium current is composed principally of N type with smaller contribution by L- and R-type channels. Potential physiological significance for these different distributions of channel types may lie in the differential channel kinetics. Activation of somatic HVA calcium current occurs more slowly than HVA currents in terminals. Additionally, somatic LVA calcium current activates and deactivates much more slowly than any HVA calcium current. Fast-activating and -deactivating calcium current may be critical to processing the rapid exocytotic response in terminals, whereas slow LVA and HVA calcium currents may play a central role in shaping the somatic firing pattern. In support of different kinetic behavior between these two compartments, we find that somatic calcium current activates a prominent slow chloride current not observed in terminal recordings. This current activates in response to calcium entering through either LVA or HVA channels and likely functions as a modulator of excitability or synaptic input. The restriction of this channel type to the soma lends further support to the idea that differential expression of fast and slow channel types in these neurons is dictated by differences in signaling requirements for somatic and terminal compartments.
منابع مشابه
Actions and release characteristics of secretin in the rat cerebellum
Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...
متن کاملActions and release characteristics of secretin in the rat cerebellum
Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...
متن کاملFragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density
Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (Ca(V)) channels. Here we show that the functional expression of neuronal N-type Ca(V) channels (Ca(V)2.2) is regulated by fragile X mental retardation protein (FMRP). We find tha...
متن کاملCalcium channel isoforms underlying synaptic transmission at embryonic Xenopus neuromuscular junctions.
Studies on the amphibian neuromuscular junction have indicated that N-type calcium channels are the sole mediators of stimulus-evoked neurotransmitter release. We show, via both presynaptic and postsynaptic voltage-clamp measurements, that dihydropyridine (DHP)-sensitive calcium channels also contribute to stimulus-evoked release at developing Xenopus neuromuscular junctions. Whereas inhibition...
متن کاملC101, a novel 4-amino-piperidine derivative selectively blocks N-type calcium channels.
N-type Ca2+ channels located on presynaptic nerve terminals regulate neurotransmitter release, including that from the spinal terminations of primary afferent nociceptors. Pharmacological and ion-channel gene knockdown approaches in animals have revealed N-type Ca2+ channels to be particularly attractive molecular targets for the discovery and development of new analgesic drugs. In recent years...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 86 1 شماره
صفحات -
تاریخ انتشار 2001